Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Two 2,2-dihalo-N-(1-phenylethyl)-cyclopropane-1-carboxamides

Dmitrii S. Yufit* and Judith A. K. Howard

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
Correspondence e-mail: d.s.yufit@durham.ac.uk

Received 10 December 2002
Accepted 27 January 2003
Online 18 February 2003

The crystal structures of $\left(1 R, 1^{\prime} S\right)-2^{\prime}, 2^{\prime}$-dichloro- N-(1-phenyl-ethyl)cyclopropane-1'-carboxamide, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$, (I), and $\left(1 R, 1^{\prime} R\right)-2^{\prime}, 2^{\prime}$-difluoro- N-(1-phenylethyl)cyclopropane-1'-carboxamide, $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}$, (II), have been determined. Both crystals contain two independent molecules with different conformations of the phenylethyl groups. In the crystals of both compounds, the molecules are linked together by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, thus forming chains in the a direction.

Comment

The title compounds, (I) and (II), have been synthesized as intermediate products in the synthesis of novel ferroelectric liquid crystals with optically active dihalo-substituted cyclopropanecarboxylic acids in their side chain (Miyazawa \& de Meijere, 2001). An X-ray structural study has confirmed the absolute configuration of the molecules, which was proposed on the basis of chemical information.

(I)

The structures of (I) and (II) are similar but not isostructural. The structures of both compounds contain two independent molecules, and the conformations of these molecules are different. However, in (II) the two independent molecules differ mainly by the orientation of the phenyl ring, whereas in (I) the conformation around the $\mathrm{N}-\mathrm{C} 7$ bonds in the two

Figure 1
The overlapping of the two independent molecules of (a) (I) and (b) (II). Displacement ellipsoids are shown at the 50% probability level, and H atoms have been omitted for clarity.
molecules is also different (Fig. 1). The replacement of chlorine substitutents in the cyclopropane cycle of (I) with the more electronegative fluorine substitutents in (II) results in a predictable (e.g. Allen, 1980; Cremer \& Kraka, 1985) increase in the asymmetry of the three-membered ring, with a significant elongation of the distal bond $\mathrm{C} 10-\mathrm{C} 11(\mathrm{C} 30-\mathrm{C} 31)$ and a shortening of the vicinal bonds $\mathrm{C} 12-\mathrm{C} 10(\mathrm{C} 32-\mathrm{C} 30)$ and C12-C11 (C32-C31) (Tables 1 and 3).

(a)

(b)

Figure 2
The arrangement of the molecules in hydrogen-bonded chains in (a) (I) and (b) (II).

In the crystals of (I) and (II), the molecules of both compounds form infinite chains along the a axis, and the molecules in these chains are connected by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Tables 2 and 4). However, because the molecules of (I) and (II) have different configurations, the molecular arrangements in the chains are also different (Fig. 2). In (I), the phenyl rings and methyl groups of adjacent molecules are in close proximity, whereas in (II), the C11 methylene groups of the cyclopropane rings are located

(a)

(b)

Figure 3
The packing diagrams of (a) (I) and (b) (II), viewed along the a axis in each case.
between the benzene rings. As a result, the chains in (I) are packed together so as to form hydrophobic areas in which the phenylethyl groups are located (Fig. 3), which is not the case in (II).

Experimental

Crystals of (I) and (II) (Miyazanwas \& de Meijere, 2001) were obtained by the slow evaporation of solutions in hexane/methanol and hexane/diethyl ether, respectively.

Compound (I)

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$
 $M_{r}=258.13$
 Monoclinic, $P 2_{1}$
 $a=9.4157$ (3) A
 $b=9.6893$ (3) \AA
 $c=13.9473$ (4) \AA
 $\beta=92.91$ (1) ${ }^{\circ}$
 $V=1270.8(1) \AA^{3}$
 $Z=4$

$D_{x}=1.349 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 999
\quad reflections
$\theta=10.3-20.8^{\circ}$
$\mu=0.49 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Plate, colourless
$0.48 \times 0.20 \times 0.06 \mathrm{~mm}$
Data collection
Bruker SMART CCD 1 K
\quad diffractometer
ω scans
Absorption correction: multi-scan
$\quad S A D A B S$ (Sheldrick, 1998)
$T_{\min }=0.799, T_{\max }=0.971$
12790 measured reflections

6176 independent reflections 5373 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30.4^{\circ}$
$h=-13 \rightarrow 12$
$k=-13 \rightarrow 11$
$l=-19 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.071$
$S=1.02$
6176 reflections
393 parameters
All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.04 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983)
Flack parameter $=-0.01(4)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

Cl1-C12	$1.7661(18)$	C7-C8	$1.524(3)$
Cl2-C12	$1.7532(19)$	C9-C10	$1.506(2)$
Cl3-C32	$1.769(2)$	C10-C12	$1.509(3)$
C14-C32	$1.7524(19)$	C10-C11	$1.512(3)$
O1-C9	$1.236(2)$	C11-C12	$1.482(3)$
O2-C29	$1.238(2)$	C29-C30	$1.502(3)$
N1-C9	$1.341(2)$	C30-C32	$1.506(3)$
N1-C7	$1.478(2)$	C30-C31	$1.523(3)$
N2-C29	$1.341(2)$	C31-C32	$1.485(3)$
N2-C27	$1.471(2)$		
C9-N1-C7	$121.88(16)$	Cl2-C12-Cl1	$111.01(10)$
C29-N2-C27	$120.91(15)$	O2-C29-N2	$123.17(17)$
O1-C9-N1	$123.83(16)$	O2-C29-C30	$122.52(17)$
O1-C9-C10	$122.38(16)$	N2-C29-C30	$114.31(15)$
N1-C9-C10	$113.76(15)$	C29-C30-C32	$119.10(15)$
C9-C10-C12	$119.31(15)$	C29-C30-C31	$118.25(16)$
C9-C10-C11	$119.40(16)$	C32-C30-C31	$58.73(12)$
C12-C10-C11	$58.74(12)$	C32-C31-C30	$60.07(13)$
C12-C11-C10	$60.51(12)$	C31-C32-C30	$61.21(13)$
C11-C12-C10	$60.75(12)$	Cl4-C32-Cl3	$111.76(11)$
C9-N1-C7-C1	$152.73(18)$	C29-N2-C27-C21	$78.3(2)$
C9-N1-C7-C8	$-80.9(2)$	C29-N2-C27-C28	$-158.78(17)$
C6-C1-C7-N1	$84.2(2)$	C22-C21-C27-N2	$-150.49(18)$
C2-C1-C7-N1	$-92.5(2)$	C26-C21-C27-N2	$33.6(2)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	$0.84(3)$	$2.11(3)$	$2.909(2)$	$158(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots 1^{\mathrm{ii}}$	$0.83(3)$	$2.12(3)$	$2.927(2)$	$163(2)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y,-z$; (ii) $2-x, y-\frac{1}{2},-z$.

Compound (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=225.23$
Monoclinic, $P 2_{1}$
$a=9.2402$ (4) \AA
$b=14.2669(5) \AA$
$c=9.3542$ (4) \AA
$\beta=109.33(1)^{\circ}$
$V=1163.6$ (1) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 998
reflections
$\theta=10.2-20.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.42 \times 0.22 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART CCD 1K
$R_{\text {int }}=0.051$ diffractometer
$\theta_{\text {max }}=30.3^{\circ}$
ω scans
11953 measured reflections
$h=-12 \rightarrow 13$
$=-20 \rightarrow 17$
64 independent reflections
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.084$
$S=0.99$
5647 reflections
393 parameters
All H -atom parameters refined

Table 3
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

F1-C12	$1.354(3)$	N2-C27	$1.466(3)$
F2-C12	$1.350(3)$	C9-C10	$1.493(3)$
F3-C32	$1.350(3)$	C10-C12	$1.476(3)$
F4-C32	$1.361(2)$	C10-C11	$1.549(3)$
O1-C9	$1.238(2)$	C11-C12	$1.436(4)$
O2-C29	$1.239(2)$	C29-C30	$1.499(3)$
N1-C9	$1.336(3)$	C30-C32	$1.474(3)$
N1-C7	$1.467(3)$	C30-C31	$1.547(3)$
N2-C29	$1.333(3)$	C31-C32	$1.450(3)$
C9-N1-C7	$122.16(19)$	C11-C12-C10	$64.28(17)$
C29-N2-C27	$123.78(19)$	O2-C29-N2	$123.5(2)$
O1-C9-N1	$122.85(19)$	O2-C29-C30	$121.7(2)$
O1-C9-C10	$121.45(18)$	N2-C29-C30	$114.75(19)$
N1-C9-C10	$115.70(19)$	C32-C30-C29	$119.3(2)$
C12-C10-C9	$119.69(19)$	C32-C30-C31	$57.31(15)$
C12-C10-C11	$56.63(16)$	C29-C30-C31	$117.4(2)$
C9-C10-C11	$117.8(2)$	C32-C31-C30	$58.81(16)$
C12-C11-C10	$59.09(16)$	F3-C32-F4	$107.82(17)$
F2-C12-F1	$107.82(18)$	C31-C32-C30	$63.88(16)$
C9-N1-C7-C1	$89.8(2)$	C29-N2-C27-C28	$-157.5(2)$
C9-N1-C7-C8	$-145.3(2)$	C29-N2-C27-C21	$76.8(3)$
C2-C1-C7-N1	$-125.6(2)$	C22-C21-C27-N2	$3.4(3)$
C6-C1-C7-N1	$53.8(2)$	C26-C21-C27-N2	$-174.6(2)$

The absolute configuration of (I) was confirmed by the Flack (1983) parameter, and that of (II) was set by reference to the configuration at C 7 in compound (I). Refined $\mathrm{C}-\mathrm{H}$ distances were in

Table 4
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1N $\cdots \mathrm{O} 2^{\mathrm{i}}$	$0.79(2)$	$2.10(2)$	$2.884(2)$	$171(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1$	$0.82(2)$	$2.02(3)$	$2.840(2)$	$177(2)$

Symmetry code: (i) $1+x, y, z$.
the ranges 0.89 (2)-1.08 (3) and 0.88 (2)-1.03 (3) \AA for (I) and (II), respectively.

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

DSY is grateful to the EPSRC for financial support. The authors also thank K. Miyazawa, S. I. Kozhushkov and A. de Meijere (Institute für Organische Chemie der Georg-AugustUniversität, Göttingen, Germany) for providing samples of the studied compounds.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1205). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (1980). Acta Cryst. B36, 81-96.
Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Kraka, E. (1985). J. Am. Chem. Soc. 107, 3811-3819.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Miyazawa, K. \& de Meijere, A. (2001). Mol. Cryst. Liq. Cryst. 364, 529-544.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

